Abstract
Describing a system in which internal detection or observation proceeds at a finite velocity is always destined to end up with a form of self-contradiction. For any formal language, for such a description, we must assume that the velocity of observation propagation or VOP be infinity. In the present paper, we propose a self-referential scheme intended for formally describing a system exhibiting the process of disequilibration propagating at a finite VOP, and find that a global logic can emerge from local disequilibration. Conservative cellular automata of Margolus type, for instance, enable disequilibration to be replaced by such a process that the number of particles is not conserved globally while appearing to be conserved by local observers. One cannot determine local rules universally. Nevertheless, global logic emerges as a result of the dynamics of a one-to-many type mapping. This is a fundamental aspect of natural languages or communication relevant to natural life and intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.