Abstract
In image-based global localization, a robot pose is estimated through image association when the robot revisits a previously visited location on a map. Image association is typically performed using high-level local features such as scale invariant feature transform (SIFT) and speeded up robust feature (SURF). However, these methods suffer from false-positive association and high computational load to reject outliers. In this study, we introduce a novel global localization method based on the proposed low-frequency image-based descriptor (LFID) and laser range data. The image is first processed by reducing the range of luminance in the frequency domain. Visual features are then extracted from the processed image through a kernel window. These visual features are described as binary representation for fast association. Because this binary representation includes a spatial distribution of features, it can minimize false-positive association. Nevertheless, false-positive association could occur when scenes appear to be similar from different viewpoints. To address this problem, this study adopts a laser rangefinder to validate the similarity of the place and reject false-positives from the scene recognition. Experimental results confirm the effectiveness of the proposed scheme in actual indoor environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.