Abstract

In this paper, we present a global localization and local pose error compensation method in a known structured environment using magnetic landmarks. In previous our research, it was possible to compensate the pose error (x <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> , y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> , q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> ) of a mobile robot correctly on the surface of structured environment with magnetic landmarks. In this work, we propose a methodology of arranging magnetic landmarks on the map such that properly arranged magnetic patterns ease the global localization of a mobile agent. Among total six patterns of magnetic-bar in square arrangement, five unique landmarks are obtained. Therefore, a heuristic pattern search method is applied to build the virtual map using five landmarks. In order to obtain the global pose information, the robot identifies the pattern of magnets, and obtains the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. Experimental results show the effectiveness of the magnetic-pattern landmarks for the global localization and local pose control of a mobile robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.