Abstract
The task of graph node classification is often approached by utilizing a local Graph Neural Network (GNN), that learns only local information from the node input features and their adjacency. In this paper, we propose to improve the performance of node classification GNNs by utilizing both global and local information, specifically by learning label- and node- features. We therefore call our method Global-Local-GNN (GLGNN). To learn proper label features, for each label, we maximize the similarity between its features and nodes features that belong to the label, while maximizing the distance between nodes that do not belong to the considered label. We then use the learnt label features to predict the node classification map. We demonstrate our GLGNN using three different GNN backbones, and show that our approach improves baseline performance, revealing the importance of global information utilization for node classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.