Abstract

As one of the most widely used applications in domain adaption (DA), Cross-domain sentiment analysis (CDSA) aims to tackle the barrier of lacking in sentiment labeled data. Applying an adversarial network to DA to reduce the distribution discrepancy between source and target domains is a significant advance in CDSA. This adversarial DA paradigm utilizes a single global domain discriminator or a series of local domain discriminators to reduce marginal or conditional probability distribution discrepancies. In general, each discrepancy has a different effect on domain adaption. However, the existing CDSA algorithms ignore this point. Therefore, in this paper, we propose an effective, novel and unsupervised adversarial DA paradigm, Global-Local Dynamic Adversarial Learning (GLDAL). This paradigm is able to quantitively evaluate the weights of global distribution and every local distribution. We also study how to apply GLDAL to CDSA. As GLDAL can effectively reduce the distribution discrepancy between domains, it performs well in a series of CDSA experiments and achieves improvements in classification accuracy compared to similar methods. The effectiveness of each component is demonstrated through ablation experiments on different parts and a quantitative analysis of the dynamic factor. Overall, this approach achieves the desired DA effect with domain shifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call