Abstract

Intrauterine growth restriction (IUGR) impairs fetal growth and development, perturbs nutrient metabolism, and increases the risk of developing diseases in postnatal life. However, the underlying mechanisms by which IUGR affects fetal liver development and metabolism remain incompletely understood. Here, we applied a high-throughput proteomics approach and biochemical analysis to investigate the impact of IUGR on the liver of newborn piglets. As a result, we identified 78 differentially expressed proteins in the three biological replicates, including 31 significantly up-regulated proteins and 47 significantly down-regulated proteins. Among them, a majority of differentially expressed proteins were related to nutrient metabolism and mitochondrial function. Additionally, many significantly down-regulated proteins participated in the mTOR signaling pathway and the phagosome maturation signaling pathway. Further analysis suggested that glucose concentration and hepatic glycogen storage were both reduced in IUGR newborn piglets, which may contribute to AMPK activation and mTORC1 inhibition. However, AMPK activation and mTORC1 inhibition failed to induce autophagy in the liver of IUGR neonatal pigs. A possible reason is that PP2Ac, a potential candidate in autophagy regulation, is significantly down-regulated in the liver of IUGR newborn piglets. These findings may provide implications for preventing and treating IUGR in human beings and domestic animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.