Abstract

Marangoni convection is induced by the variation of surface tension along a free surface, which depends not only on temperature but also concentration. However, the onset of thermo-solutal Marangoni convection in a liquid bridge system is still unknown. Here, we perform a global linear stability analysis to determine the theoretical onset of the Marangoni convection occurring in the half-zone liquid bridge of the floating zone method of SixGe1−x crystal growth. The cylindrical liquid bridge is heated from the bottom and the highest Silicon concentration is on the top. The thermal and solutal Marangoni forces are in the same direction in this configuration. The stability diagram of the axisymmetric base flow is obtained by solving the large-scale eigenvalue problem using a Jacobian-free Arnoldi method. Oscillatory disturbance patterns appear with different azimuthal wavenumbers for unstable eigenmodes. The present linear stability analysis results explain our previous numerical simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.