Abstract

Evolution strategies (ESs) are zeroth-order stochastic black-box optimization heuristics invariant to monotonic transformations of the objective function. They evolve a multivariate normal distribution, from which candidate solutions are generated. Among different variants, CMA-ES is nowadays recognized as one of the state-of-the-art zeroth-order optimizers for difficult problems. Despite ample empirical evidence that ESs with a step-size control mechanism converge linearly, theoretical guarantees of linear convergence of ESs have been established only on limited classes of functions. In particular, theoretical results on convex functions are missing, where zeroth-order and also first-order optimization methods are often analyzed. In this paper, we establish almost sure linear convergence and a bound on the expected hitting time of an ES family, namely, the $(1+1)_\kappa$-ES, which includes the (1+1)-ES with (generalized) one-fifth success rule and an abstract covariance matrix adaptation with bounded condition number, on a broad class of functions. The analysis holds for monotonic transformations of positively homogeneous functions and of quadratically bounded functions, the latter of which particularly includes monotonic transformation of strongly convex functions with Lipschitz continuous gradient. As far as the authors know, this is the first work that proves linear convergence of ES on such a broad class of functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.