Abstract
Partial least squares path modeling has been widely used for component-based structural equation modeling, where constructs are represented by weighted composites or components of observed variables. This approach remains a limited-information method that carries out two separate stages sequentially to estimate parameters (component weights, loadings, and path coefficients), indicating that it has no single optimization criterion for estimating the parameters at once. In general, limited-information methods are known to provide less efficient parameter estimates than full-information ones. To address this enduring issue, we propose a full-information method for partial least squares path modeling, termed global least squares path modeling, where a single least squares criterion is consistently minimized via a simple iterative algorithm to estimate all the parameters simultaneously. We evaluate the relative performance of the proposed method through the analyses of simulated and real data. We also show that from algorithmic perspectives, the proposed method can be seen as a block-wise special case of another full-information method for component-based structural equation modeling-generalized structured component analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.