Abstract
AbstractAimLeaf traits are central to plant function, and key variables in ecosystem models. However recently published global trait maps, made by applying statistical or machine‐learning techniques to large compilations of trait and environmental data, differ substantially from one another. This paper aims to demonstrate the potential of an alternative approach, based on eco‐evolutionary optimality theory, to yield predictions of spatio‐temporal patterns in leaf traits that can be independently evaluated.InnovationGlobal patterns of community‐mean specific leaf area (SLA) and photosynthetic capacity (Vcmax) are predicted from climate via existing optimality models. Then leaf nitrogen per unit area (Narea) and mass (Nmass) are inferred using their (previously derived) empirical relationships to SLA and Vcmax. Trait data are thus reserved for testing model predictions across sites. Temporal trends can also be predicted, as consequences of environmental change, and compared to those inferred from leaf‐level measurements and/or remote‐sensing methods, which are an increasingly important source of information on spatio‐temporal variation in plant traits.Main conclusionsModel predictions evaluated against site‐mean trait data from > 2,000 sites in the Plant Trait database yielded R2 = 73% for SLA, 38% for Nmass and 28% for Narea. Declining species‐level Nmass, and increasing community‐level SLA, have both been recently reported and were both correctly predicted. Leaf‐trait mapping via optimality theory holds promise for macroecological applications, including an improved understanding of community leaf‐trait responses to environmental change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.