Abstract

Emerging data-driven techniques, such as Complex Networks (CNs), can identify spatial linkages between droughts on a global scale and can improve early warning systems. Recent studies used CNs to identify hotspots of global drought teleconnections as land drought hubs; however, these studies excluded the ocean regions in CN, an oversight that can upend the insights gained thus far. Here, using a comprehensive global CN analysis on drought onsets, we show that oceanic regions harbor significantly larger drought hubs than land regions. The Indo-Pacific Warm pool (IPWP) in the Maritime continent emerges as the most significant drought hub having the farthest teleconnections. We show that IPWP, together with a few sub-tropical land and ocean regions, exhibit a ‘rich club phenomenon’ in CN. Further, using a causal network learning algorithm, we demonstrate the confounding role of oceans in modulating drought onsets on land regions. Our study reveals insights on the spatiotemporal linkages of global drought onsets and highlights the role of oceans in driving global drought teleconnections and modulation of land drought hubs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.