Abstract

Reduced expression of glutamate decarboxylase 67 (GAD67), encoded by the Gad1 gene, is a consistent finding in postmortem brains of patients with several psychiatric disorders, including schizophrenia, bipolar disorder and major depressive disorder. The dysfunction of GAD67 in the brain is implicated in the pathophysiology of these psychiatric disorders; however, the neurobiological consequences of GAD67 dysfunction in mature brains are not fully understood because the homozygous Gad1 knockout is lethal in newborn mice. We hypothesized that the tetracycline-controlled gene expression/suppression system could be applied to develop global GAD67 knockdown mice that would survive into adulthood. In addition, GAD67 knockdown mice would provide new insights into the neurobiological impact of GAD67 dysfunction. Here, we developed Gad1tTA/STOP−tetO biallelic knock-in mice using Gad1STOP−tetO and Gad1tTA knock-in mice, and compared them with Gad1+/+ mice. The expression level of GAD67 protein in brains of Gad1tTA/STOP−tetO mice treated with doxycycline (Dox) was decreased by approximately 90%. The GABA content was also decreased in the brains of Dox-treated Gad1tTA/STOP−tetO mice. In the open-field test, Dox-treated Gad1tTA/STOP−tetO mice exhibited hyper-locomotor activity and decreased duration spent in the center region. In addition, acoustic startle responses were impaired in Dox-treated Gad1tTA/STOP−tetO mice. These results suggest that global reduction in GAD67 elicits emotional abnormalities in mice. These GAD67 knockdown mice will be useful for elucidating the neurobiological mechanisms of emotional abnormalities, such as anxiety symptoms associated with psychiatric disorders.

Highlights

  • Introduction γAminobutyric acid (GABA), a major inhibitory neurotransmitter, regulates a variety of biological functions

  • Western blot analyses demonstrated that the expression of glutamate decarboxylase 67 (GAD67) protein in the brain was abolished in Gad1STOP−tetracycline operator site (tetO)/STOP−tetO mice with or without cleft palate (Fig. 2d, e)

  • These observations indicate that the insertion of the Neo-STOP-tetO cassette following the Gad1 promoter eliminates the function of the Gad1 gene in mice

Read more

Summary

Introduction

Introduction γAminobutyric acid (GABA), a major inhibitory neurotransmitter, regulates a variety of biological functions. Because homozygous Gad knockout (Gad1−/−) is lethal in newborn mice [15], conditional Gad1−/− mice generated with a Cre-loxP strategy have often been used for neurobiological studies [16,17,18,19,20]. These studies have provided much information about the function of GAD67 in targeted cells. Several studies have been performed to investigate GAD67 function using mice with GAD67 haplodeficiency; physiological changes, such as GABA reduction in the brain and behavioral abnormalities, were mild in those mice [15, 21,22,23,24]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.