Abstract

An iterative compatible cell mapping (CCM) method with the digraph theory is presented in this paper to compute the global invariant manifolds of dynamical systems with high precision and high efficiency. The accurate attractors and saddles can be simultaneously obtained. The simple cell mapping (SCM) method is first used to obtain the periodic solutions. The results obtained by the generalized cell mapping (GCM) method are treated as a database. The SCM and GCM are compatible in the sense that the SCM is a subset of the GCM. The depth-first search algorithm is utilized to find the coarse coverings of global stable and unstable manifolds based on this database. The digraph GCM method is used if the saddle-like periodic solutions cannot be obtained with the SCM method. By taking this coarse covering as a new cell state space, an efficient iterative procedure of the CCM method is proposed by combining sort, search and digraph algorithms. To demonstrate the effectiveness of the proposed method, the classical Hénon map with periodic or chaotic saddles is studied in far more depth than reported in the literature. Not only the global invariant manifolds, but also the attractors and saddles are computed. The computational efficiency can be improved by up to 200 times compared to the traditional GCM method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call