Abstract

In this study, Gradient Boosted Regression Trees is applied, for the first time, to predict governing factors for methylene blue (MB) adsorption on a variety of adsorbents involving clay minerals, such as kaolinite and sepiolite together with industrial wastes red mud and fly ash, and alkali activated materials synthesized from aforementioned raw materials. Dataset was constructed using electronic databases, such as ScienceDirect, Scopus, Elsevier, and Google, experimental studies published between 2005 and 2022 were covered. The final dataset included experimental conditions, such as adsorbent type, adsorbent properties (surface characteristics, density, and chemical modifications), pH of the medium, adsorbent dosage, and temperature; and it involved 914 datapoints, which were extracted out of 75 papers (out of ∼1360 initially screened). Among distinct parameters, initial adsorbate concentration was found to be the most dominant factor affecting the MB uptake. Concordantly, pH of the solution medium, raw material selection, and modification types were also found to be significant in MB adsorption. Results showed that in terms of raw material and modification types, sepiolite and chemical (acid and/or alkaline modification) and thermal treatments, respectively, come forward as the most powerful candidates for enhanced MB adsorption performance. Modifications applied on adsorbents should be evaluated separately, as there is no general rule applicable for all experimental conditions, and the strength of the contribution of modification type also depends on initial adsorbate concentration. Implementation of various imputation methods showed the importance of reporting experimental factors, such as surface area, in the literature. Range of applicability of the suggested modeling procedure was assessed to help experimenters in testing MB uptake under novel experimental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call