Abstract
Sentence compression holds promise for many applications ranging from summarization to subtitle generation. Our work views sentence compression as an optimization problem and uses integer linear programming (ILP) to infer globally optimal compressions in the presence of linguistically motivated constraints. We show how previous formulations of sentence compression can be recast as ILPs and extend these models with novel global constraints. Experimental results on written and spoken texts demonstrate improvements over state-of-the-art models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.