Abstract
Since the beginning of the satellite era, Southern Ocean sea surface temperatures (SSTs) have cooled, despite global warming. While observed Southern Ocean cooling has previously been reported to have minimal impact on the tropical Pacific, the efficiency of this teleconnection has recently shown to be mediated by subtropical cloud feedbacks that are highly model-dependent. Here, we conduct a coupled model intercomparison of paired ensemble simulations under historical radiative forcing: one with freely evolving SSTs and the other with Southern Ocean SST anomalies constrained to follow observations. We reveal a global impact of observed Southern Ocean cooling in the model with stronger (and more realistic) cloud feedbacks, including Antarctic sea-ice expansion, southeastern tropical Pacific cooling, northward-shifted Hadley circulation, Aleutian low weakening, and North Pacific warming. Our results therefore suggest that observed Southern Ocean SST decrease might have contributed to cooler conditions in the eastern tropical Pacific in recent decades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.