Abstract
X-ray photoelectron spectroscopy (XPS) is an important characterization tool in the pursuit of controllable fluorination of two-dimensional hexagonal boron nitride (h-BN). However, there is a lack of clear spectral interpretation, and seemingly conflicting measurements exist. To discern the structure-spectroscopy relation, we performed a comprehensive first-principles study on the boron 1s edge XPS of fluorinated h-BN (F-BN) nanosheets. By gradually introducing 1-6 fluorine atoms into different boron or nitrogen sites, we created various F-BN structures with doping ratios ranging from 1 to 6%. Our calculations reveal that fluorines landed at boron or nitrogen sites exert competitive effects on the B 1s binding energies (BEs), leading to red or blue shifts in different measurements. Our calculations affirmed the hypothesis that fluorination affects 1s BEs of all borons in the π-conjugated system, opposing the transferability from h-BN to F-BN. Additionally, we observe that BE generally increases with higher fluorine concentration when both borons and nitrogens are nonexclusively fluorinated. These findings provide critical insights into how fluorination affects boron's 1s BEs, contributing to a better understanding of fluorination functionalization processes in h-BN and its potential applications in materials science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.