Abstract

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.