Abstract

The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.

Highlights

  • Meiosis is a critical process in eukaryotes, occupying a central role in the reproduction and life cycles of all sexually reproducing organisms

  • A comparative analysis of sequencing datasets against Rice Genome Annotation Project reference data, at a cutoff of one read per million reads, revealed that 25,750 genes were expressed in the wild type, while 28,455 genes were detected in the Osam1 mutant

  • We identified meiosis-specific genes that respond to OsAM1 effectively based on two criteria: (1) the genes are differentially expressed genes (DEGs); (2) the genes are involved in meiosis process pathways or previously identified as rice meiotic genes or rice homologs of meiotic genes in other species

Read more

Summary

Introduction

Meiosis is a critical process in eukaryotes, occupying a central role in the reproduction and life cycles of all sexually reproducing organisms. Meiosis differs from mitosis in that one round of DNA replication is followed by two sequential cell divisions, leading to the generation of four haploid cells from a single initial diploid cell. The chromosome number of the zygote derived from fertilization recovers to that of the parents [1]. Meiosis is important for sexually reproducing organisms to retain the stability of their genetic materials. Genetic variations can be produced in meiosis through homologous chromosome recombination during prophase I [2].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.