Abstract

<p>We study the solar wind interactions of Mercury, Venus and Mars in a global hybrid model, where ions are treated as particles and electrons form a charge-neutralizing fluid. We concentrate on the formation of large-scale, ultra-low frequency (ULF) waves in planetary ion foreshocks and their dependence on solar wind and interplanetary magnetic field conditions in the inner solar system. The ion foreshock forms in the upstream region ahead of the quasi-parallel bow shock, where the angle between the shock normal and the magnetic field is small enough. The magnetic connection to the bow shock allows the backstreaming of solar wind ions leading to the formation of the ion foreshock. This kind of beam-plasma configuration is a source of free energy for the excitation of plasma waves. The foreshock ULF waves convect downstream with the solar wind flow and encounter bow shock and transmit in the downstream region. The analyzed simulation runs use more than two hundred simulation particles per cell on average to allow fine enough velocity space resolution for resolving the foreshocks and waves self-consistently. We find significant differences in wave and foreshock properties between these three planets and discuss their causes.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call