Abstract

Helping the world’s coastal communities adapt to climate change impacts requires evaluating the vulnerability of coastal communities and assessing adaptation options. This includes understanding the potential for ‘natural’ infrastructure (ecosystems and the biodiversity that underpins them) to reduce communities’ vulnerability, alongside more traditional ‘hard’ infrastructure approaches. Here we present a spatially explicit global evaluation of the vulnerability of coastal-dwelling human populations to key climate change exposures and explore the potential for coastal ecosystems to help people adapt to climate change (ecosystem-based adaptation (EbA)). We find that mangroves and coral reefs are particularly well situated to help people cope with current weather extremes, a function that will only increase in importance as people adapt to climate change now and in coming decades. We find that around 30.9 million people living within 2km of the coast are highly vulnerable to tropical storms and sea-level rise (SLR). Mangroves and coral reefs overlap these threats to at least 5.3 and 3.4 million people, respectively, with substantial potential to dissipate storm surges and improve resilience against SLR effects. Significant co-benefits from mangroves also accrue, with 896 million metric tons of carbon stored in their soils and above- and below-ground biomass. Our framework offers a tool for prioritizing ‘hotspots’ of coastal EbA potential for further, national and local analyses to quantify risk reduction and, thereby, guide investment in coastal ecosystems to help people adapt to climate change. In doing so, it underscores the global role that conserving and restoring ecosystems can play in protecting human lives and livelihoods, as well as biodiversity, in the face of climate change.

Highlights

  • Adapting to climate change is one of the biggest challenges facing humanity over coming decades

  • We calculated the number of people protected per hectare of either mangrove or coral reef in each country by dividing the number of people, as measured by the low-elevation coastal zone (LECZ) (S1 Text; S2 Fig), in the top 10th percentile of vulnerable cells in each country, by the number of hectares of each ecosystem extent per country

  • The greatest amount of people protected per hectare of coral reefs are in South Africa, Singapore, China, and the United States while lower densities of people protected by coral reefs are found in Tokelau, the Marshall Islands, and Kiribati

Read more

Summary

Introduction

Adapting to climate change is one of the biggest challenges facing humanity over coming decades. Many of the world’s coastal zones already bear the brunt of extreme weather, with the human toll of individual events in the past five years, such as Typhoons Bopha and Haiyan in the Philippines and Hurricanes Maria, Harvey, and Irma in the US, taking thousands of lives [2,3], and generating financial costs running into hundreds of billions of dollars in insurance, rebuilding, and repairs [4,5]. Population growth and economic development continue to increase the amount and value of assets in these vulnerable zones, trends that are projected to last for decades [6,7,8], amplifying impacts and the costs of recovery. Loss of lives and assets in coastal zones are likely to increase significantly in the coming decades as a result of these demographic and socio-economic trends alone, leading to a doubling or more of hurricane damages by 2100 [10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call