Abstract

Global gyrokinetic Vlasov simulations for trapped ion modes indicate that the ion temperature gradient (ITG) instability saturates via nonlinear toroidal coupling. Trapped Ion modes were studied by solving a Vlasov equation averaged over the cyclotron and bounce motion of trapped ions. The distribution function, for trapped ions, is then calculated in a two-dimensional phase space, parametrized by two adiabatic invariants, the longitudinal action and the magnetic moment, in presence of a magnetic shear. Our model can be viewed as a kinetic version of the standard one-field Hasegawa-Mima-type and a broad frequency spectrum can originate from model for trapped-ion driven turbulence. Some interesting new features, which appear in the nonlinear regime of the instability, are then discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.