Abstract

Taiji-1 is the first technology demonstration satellite of the Taiji program of China’s space-borne gravitational wave antenna. After the demonstration of the key individual technologies, Taiji-1 continues collecting the data of the precision orbit determinations, satellite attitudes, and non-conservative forces exerted on the S/C. Therefore, during its free-fall, Taiji-1 can be viewed as operating in the high-low satellite-to-satellite tracking mode of a gravity recovery mission. In this work, we have selected and analyzed the one month data from Taiji-1’s observations, and developed the techniques to resolve the long term interruptions and disturbances in the data due to the scheduled technology demonstration experiments. The first global gravity model TJGM-r1911, that independently derived from China’s own satellite mission, is successfully built from Taiji-1’s observations. Compared with gravity models from CHAMP and other satellite gravity missions, the accuracy discrepancies exist, which is mainly caused by the data discontinuity problem. As the extended free-falling phase been approved, Taiji-1 could serve as a gravity recovery mission for China since 2022 and it will provide us the independent measurement of both the static and the monthly time-variable global gravity field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call