Abstract

For spacelike stationary (i.e. zero mean curvature) surfaces in 4-dimensional Lorentz space, one can naturally introduce two Gauss maps and a Weierstrass-type representation. In this paper we investigate the global geometry of such surfaces systematically. The total Gaussian curvature is related with the surface topology as well as the indices of the so-called good singular ends by a Gauss–Bonnet type formula. On the other hand, as shown by a family of counterexamples to Ossermanʼs theorem, finite total curvature no longer implies that Gauss maps extend to the ends. Interesting examples include the deformations of the classical catenoid, the helicoid, the Enneper surface, and Jorge–Meeksʼ k-noids. Each family of these generalizations includes embedded examples in the 4-dimensional Lorentz space, showing a sharp contrast with the 3-dimensional case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.