Abstract

This work presents a global geometric similarity scheme (GGSS) for feature selection in fault diagnosis, which is composed of global geometric model and similarity metric. The global geometric model is formed to construct connections between disjoint clusters in fault diagnosis. The similarity metric of the global geometric model is applied to filter feature subsets. To evaluate the performance of GGSS, fault data from wind turbine test rig is collected, and condition classification is carried out with classifiers established by Support Vector Machine (SVM) and General Regression Neural Network (GRNN). The classification results are compared with feature ranking methods and feature wrapper approaches. GGSS achieves higher classification accuracy than the feature ranking methods, and better time efficiency than the feature wrapper approaches. The hybrid scheme, GGSS with wrapper, obtains optimal classification accuracy and time efficiency. The proposed scheme can be applied in feature selection to get better accuracy and efficiency in condition classification of fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.