Abstract

BackgroundThe organic cation transporter OCT1 (SLC22A1) mediates the uptake of vitamin B1, cationic drugs, and xenobiotics into hepatocytes. Nine percent of Caucasians lack or have very low OCT1 activity due to loss-of-function polymorphisms in OCT1 gene. Here we analyzed the global genetic variability in OCT1 to estimate the therapeutic relevance of OCT1 polymorphisms in populations beyond Caucasians and to identify evolutionary patterns of the common loss of OCT1 activity in humans.MethodsWe applied massively parallel sequencing to screen for coding polymorphisms in 1,079 unrelated individuals from 53 populations worldwide. The obtained data was combined with the existing 1000 Genomes data comprising an additional 1,092 individuals from 14 populations. The identified OCT1 variants were characterized in vitro regarding their cellular localization and their ability to transport 10 known OCT1 substrates. Both the population genetics data and transport data were used in tandem to generate a world map of loss of OCT1 activity.ResultsWe identified 16 amino acid substitutions potentially causing loss of OCT1 function and analyzed them together with five amino acid substitutions that were not expected to affect OCT1 function. The variants constituted 16 major alleles and 14 sub-alleles. Six major alleles showed improper subcellular localization leading to substrate-wide loss in activity. Five major alleles showed correct subcellular localization, but substrate-specific loss of activity. Striking differences were observed in the frequency of loss of OCT1 activity worldwide. While most East Asian and Oceanian individuals had completely functional OCT1, 80 % of native South American Indians lacked functional OCT1 alleles. In East Asia and Oceania the average nucleotide diversity of the loss-of-function variants was much lower than that of the variants that do not affect OCT1 function (ratio of 0.03) and was significantly lower than the theoretically expected heterozygosity (Tajima’s D = −1.64, P < 0.01).ConclusionsComprehensive genetic analyses showed strong global variations in the frequency of loss of OCT1 activity with selection pressure for maintaining OCT1 activity in East Asia and Oceania. These results not only enable pharmacogenetically-based optimization of drug treatment worldwide, but may help elucidate the functional role of human OCT1.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0172-0) contains supplementary material, which is available to authorized users.

Highlights

  • The organic cation transporter OCT1 (SLC22A1) mediates the uptake of vitamin B1, cationic drugs, and xenobiotics into hepatocytes

  • Significant changes in pharmacokinetics and, as a consequence, in clinical effects of several drugs were observed in the carriers of loss-of-function OCT1 polymorphisms [3,4,5, 12]

  • The comprehensive population and functional genetic analyses performed in this study revealed strong

Read more

Summary

Introduction

The organic cation transporter OCT1 (SLC22A1) mediates the uptake of vitamin B1, cationic drugs, and xenobiotics into hepatocytes. Nine percent of Caucasians lack or have very low OCT1 activity due to loss-of-function polymorphisms in OCT1 gene. (SLC22A1) is strongly expressed in human hepatocytes and facilitates uptake of organic cations from the sinusoidal blood. Known substrates of OCT1 are vitamin B1, toxins like 1-methyl-4-phenylpyridinium (MPP+) and monocrotaline, and clinically relevant drugs like metformin, morphine, tropisetron, tramadol, and others [1,2,3,4,5,6,7,8,9]. Significant changes in pharmacokinetics and, as a consequence, in clinical effects of several drugs were observed in the carriers of loss-of-function OCT1 polymorphisms [3,4,5, 12]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.