Abstract
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of nonradiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of 4 in linear resolution, from 96x96x64 to 384x384x256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma \beta; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma \beta\ decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of 2 in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model (shearing box) calculations and with the recent nonrelativistic global convergence studies of Hawley et al. (2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.