Abstract
To gain insights into the roles the paternal genome and chromosome number play in pre-implantation development, we cultured fertilized embryos and diploid and haploid parthenotes (DPs and HPs, respectively), and compared their development and gene expression patterns. The DPs and fertilized embryos did not differ in developmental ability but HPs development was slower and characterized by impaired compaction and blastocoel formation. Microarray analysis revealed that fertilized blastocysts expressed several genes at higher levels than DP blastocysts; these included the Y-chromosome-specific gene eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked ( Eif2s3y) and the imprinting gene U2 small nuclear ribonucleoprotein auxiliary factor 1, related sequence 1 ( U2af1-rs1). We also found that when DPs and HPs were both harvested at 44 and 58 h of culture, they differed in the expression of 38 and 665 genes, respectively. However, when DPs and HPs were harvested at the midpoints of 4-cell stage (44 and 49 h, respectively), no differences in expression was observed. Similarly, when the DPs and HPs were harvested when they became blastocysts (102 and 138 h, respectively), only 15 genes showed disparate expression. These results suggest that while transcripts needed for early development are delayed in HPs, it does progress sufficiently for the generation of the various developmental stages despite the lack of genetic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.