Abstract

Background Klebsiella pneumoniae (Kpn) is an important respiratory pathogen associated with significant mortality, fierce inflammatory responses and high rates of antimicrobial resistance. The increasing incidence of multidrug resistant Kpn has significantly narrowed the therapeutic options available; as such, there is an urgent need to better understand Kpn pathophysiology to identify novel therapeutic targets. Here we performed an in vivo transcriptomic analysis of Kpn isolated from a mammalian host with pulmonary infection. Methods C57BL/6 mice were intranasally inoculated with the virulent Kp52.145 strain (serotype O1:K2); with lungs extracted, homogenised and pooled (n=3; in duplicate) at 32 h post-infection for bacterial RNA purification and RNA-Seq (Illumina). Differential gene expression (analysed using Degust [Voom/Limma]; FDR cut-off =0.01, abs log-FC=2) was assessed in comparison with mid-log phase growth in Lennox broth. Results Overall, we identified >900 differentially expressed genes (DEGs), comprising ∼17 % of the combined chromosomal and plasmid coding sequence repertoire. 52 % of the DEGs were upregulated during infection, including several siderophore-independent iron-, manganese- and zinc-uptake systems (e.g. hmuRSTUV, sitABCD, mntH and znuACB). We also observed a marked in vivo oxidative stress signal, with several Kpn oxidative stress response genes (e.g. oxyR, katE, katG) upregulated during infection. In contrast, expression of mgrB, a negative-regulator of the PhoPQ two-component system associated with resistance to host antimicrobial peptides was downregulated. Conclusion This study provides a novel insight into Kpn gene expression during pulmonary infection. Overall, our data suggest that adaptation to metal starvation, oxidative stress and innate immune defenses are critical for the success of Kpn lung infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.