Abstract

Bendability is a key property for ultra-high strength steels, that affects their usability in many industrial applications. Previous research and efforts on improving the bendability of high-strength steels have focused mostly on the minimum bend radius. However, as the minimum bend radius has been deemed insufficient as a measure of bendability, a new approach may be necessary for further advancements in bendability research. In this paper, bendability of nine materials is investigated from a global formability perspective, through bending tests and tensile tests. Digital image correlation is used for strain measurement in both the bending and tensile tests. Linear regression is used for determining the relationships between the obtained tensile test results and bending strain distributions. The findings of this paper show that applying a “local/global formability” approach to bendability could be beneficial for future research, as better description of the bending behaviour can be obtained and the factors affecting certain bending behaviours can be thoroughly investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.