Abstract
A fixed-time distributed formation control strategy is investigated for multiple underactuated unmanned surface vehicles (USVs) with unmeasured velocities and input saturation. Initially, a necessary coordinate transformation is applied to the mathematical model of USVs to address the underactuated issue. Subsequently, a fixed-time extended state observer (FESO) is constructed to estimate unmeasured velocities and lumped disturbances of USVs based on input and output data in the control loop. Meanwhile, the leader–follower approach is applied to achieve a preset formation. A fixed-time differentiator is utilized to compute real-time differential signals for virtual control laws, which simplifies the complexity of controller design. Furthermore, a fixed-time distributed formation controller is designed based on an asymmetric differentiable saturation model. The effects of input saturation are eliminated by a designed auxiliary system. Finally, the fixed-time stability of the closed-loop system is analyzed through the Lyapunov stability theory. The comparison simulation results verify the effectiveness and superiority of the proposed formation control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.