Abstract

In this paper, we consider the fault-tolerant control problem for aerial vehicles with redundant actuators. The redundant actuator brings difficulty in fault identification and isolation. Active fault-tolerant control is adopted in this paper as it can detect actuator fault. The entire proposed fault-tolerant control algorithm contains a baseline controller, the fault detection and isolation scheme, and the controller reconstruction module. A robust parameter identification method is designed to identify the torque and thrust generated by the actuators. The feasibility of isolating the fault for the redundant actuators is analyzed through mathematical proof. Through the analysis, the practical fault isolation algorithm is also proposed. Two typical aerial vehicles with redundant actuators, an eight-rotor aircraft and a hexa-rotor aircraft, are adopted in numerical simulations to verify the effectiveness of the proposed fault-tolerant control approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.