Abstract
In this paper, the global exponential stability in Lagrange sense for continuous neutral type recurrent neural networks (NRNNs) with multiple time delays is studied. Three different types of activation functions are considered, including general bounded and two types of sigmoid activation functions. By constructing appropriate Lyapunov functions, some easily verifiable criteria for the ultimate boundedness and global exponential attractivity of NRNNs are obtained. These results can be applied to monostable and multistable neural networks as well as chaos control and chaos synchronization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.