Abstract

Abstract In this paper, the global exponential stability and periodicity for a class of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction–diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call