Abstract
In this paper, global exponential stability is studied for a class of high-order bidirectional associative memory (BAM) neural networks with time-varying delays. An approach combining the Lyapunov functional with the Linear Matrix Inequality (LMI) is taken to study the problems. Several sufficient conditions are presented for ensuring the system to be globally exponentially stable. Three typical examples are presented to show the application of the criteria obtained in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.