Abstract

AbstractWe consider one dimensional isentropic compressible Navier–Stokes equations with constitutive relation of Maxwell's law instead of Newtonion law. For this new model, we show that for small initial data, a unique smooth solution exists globally and converges to the equilibrium state as time goes to infinity. For some large data, in contrast to the situation for classical compressible Navier–Stokes equations, which admits global solutions, we show finite time blow up of solutions for the relaxed system. Moreover, we prove the compatibility of the two systems in the sense that, for vanishing relaxation parameters, the solutions to the relaxed system are shown to converge to the solutions of classical system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.