Abstract

We consider a partial differential equation that arises in the coarse-grained description of epitaxial growth processes. This is a parabolic equation whose evolution is governed by the competition between the determinant of the Hessian matrix of the solution and the biharmonic operator. This model might present a gradient flow structure depending on the boundary conditions. We first extend previous results on the existence of stationary solutions to this model for Dirichlet boundary conditions. For the evolution problem we prove local existence of solutions for arbitrary data and global existence of solutions for small data. By exploiting the boundary conditions and the variational structure of the equation, according to the size of the data we prove finite time blow-up of the solution and/or convergence to a stationary solution for global solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.