Abstract
Abstract This paper concerns the existence of global weak solutions á la Leray for compressible Navier–Stokes–Fourier systems with periodic boundary conditions and the truncated virial pressure law which is assumed to be thermodynamically unstable. More precisely, the main novelty is that the pressure law is not assumed to be monotone with respect to the density. This provides the first global weak solutions result for the compressible Navier-Stokes-Fourier system with such kind of pressure law which is strongly used as a generalization of the perfect gas law. The paper is based on a new construction of approximate solutions through an iterative scheme and fixed point procedure which could be very helpful to design efficient numerical schemes. Note that our method involves the recent paper by the authors published in Nonlinearity (2021) for the compactness of the density when the temperature is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Applied and Industrial Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.