Abstract

The existence of global-in-time weak solutions to the one-dimensional viscous quantum hydrodynamic equations is proved. The model consists of the conservation laws for the particle density and particle current density, including quantum corrections from the Bohm potential and viscous stabilizations arising from quantum Fokker–Planck interaction terms in the Wigner equation. The model equations are coupled self-consistently to the Poisson equation for the electric potential and are supplemented with periodic boundary and initial conditions. When a diffusion term linearly proportional to the velocity is introduced in the momentum equation, the positivity of the particle density is proved. This term, which introduces a strong regularizing effect, may be viewed as a classical conservative friction term due to particle interactions with the background temperature. Without this regularizing viscous term, only the nonnegativity of the density can be shown. The existence proof relies on the Faedo–Galerkin method together with a priori estimates from the energy functional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.