Abstract
AbstractFor the physical vacuum free boundary problem with the sound speed being C1/2‐Hölder continuous near vacuum boundaries of the one‐dimensional compressible Euler equations with damping, the global existence of the smooth solution is proved, which is shown to converge to the Barenblatt self‐similar solution for the porous media equation with the same total mass when the initial datum is a small perturbation of the Barenblatt solution. The pointwise convergence with a rate of density, the convergence rate of velocity in the supremum norm, and the precise expanding rate of the physical vacuum boundaries are also given. The proof is based on a construction of higher‐order weighted functionals with both space and time weights capturing the behavior of solutions both near vacuum states and in large time, an introduction of a new ansatz, higher‐order nonlinear energy estimates, and elliptic estimates.© 2016 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.