Abstract
Under the plane wave setting, the existence of small Cauchy data global solution (or local solution) of Landau–Lifshitz–Gilbert equation is proved. Some variable separation type solutions (include some small data global solution) and self-similar type solutions are constructed for the Harmonic map heat flow on S2. As far as we know, there is not any literature that presents the exact blowup solution of this equation. Some explicit solutions which include some finite time gradient-blowup solutions are provided. These blowup examples indicate a finite time blowup will happen in any spacial dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.