Abstract
We investigate global strong solutions for isentropic compressible fluids with initial data close to a stable equilibrium. We obtain the existence and uniqueness of a solution in a functional setting invariant by the scaling of the associated equations. More precisely, the initial velocity has the same critical regularity index as for the incompressible homogeneous Navier-Stokes equations, and one more derivative is needed for the density. We point out a smoothing effect on the velocity and a L 1-decay on the difference between the density and the constant reference state. The proof lies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.