Abstract
In this paper we show global existence of the Lipschitz continuous solution for the stable Muskat problem with finite depth (confined) and initial data satisfying some smallness conditions relating the amplitude, the slope, and the depth. The cornerstone of the argument is that, for these small initial data, both the amplitude and the slope remain uniformly bounded for all positive times. We notice that, for some of these solutions, the slope can grow but it remains bounded. This is very different from the infinite deep case, where the slope of the solutions satisfy a maximum principle. Our work generalizes a previous result where the depth is infinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.