Abstract

In this research, we study the global existence of solutions to the compressible Navier–Stokes–Korteweg system around a constant state. This system describes liquid-vapor type two-phase flow with a phase transition with diffuse interface. Previous works assume that pressure is a monotone function for change of density similarly to the usual compressible Navier–Stokes system. On the other hand, due to phase transition the pressure is in fact non-monotone function, and the linearized system loses symmetry in a critical case such that the derivative of pressure is 0 at the given constant state. We show that global L 2 solutions are available for the critical case of small data, whose momentum is in its derivative form, and obtain parabolic type decay rate of the solutions. This is proved based on the decomposition of solutions to a low frequency part and a high frequency part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.