Abstract

In this paper, we study a generalized Camassa–Holm (gCH) model with both dissipation and dispersion, which has (\(N+1\))-order nonlinearities and includes the following three integrable equations: the Camassa–Holm, the Degasperis–Procesi, and the Novikov equations, as its reductions. We first present the local well-posedness and a precise blow-up scenario of the Cauchy problem for the gCH equation. Then, we provide several sufficient conditions that guarantee the global existence of the strong solutions to the gCH equation. Finally, we investigate the propagation speed for the gCH equation when the initial data are compactly supported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.