Abstract
In this paper, we are concerned with the global existence and optimal rates of strong solutions for three-dimensional compressible viscoelastic flows. We prove the global existence of the strong solutions by the standard energy method under the condition that the initial data are close to the constant equilibrium state in $H^2$-framework. If additionally the initial data belong to $L^1$, the optimal convergence rates of the solutions in $L^p$-norm with $2\leq p\leq 6$ and optimal convergence rates of their spatial derivatives in $L^2$-norm are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.