Abstract
<p style='text-indent:20px;'>In this paper, we consider a class of finitely degenerate coupled parabolic systems. At high initial energy level <inline-formula><tex-math id="M1">\begin{document}$ J(u_{0})&gt;d $\end{document}</tex-math></inline-formula>, we present a new sufficient condition to describe the global existence and nonexistence of solutions for problem (1)-(4) respectively. Moreover, by applying the Levine's concavity method, we give some affirmative answers to finite time blow up of solutions at arbitrary positive initial energy <inline-formula><tex-math id="M2">\begin{document}$ J(u_{0})&gt;0 $\end{document}</tex-math></inline-formula>, including the estimate of upper bound of blowup time.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.