Abstract

ABSTRACTIn this paper, we investigate the initial boundary value problem for a pseudo-parabolic equation under the influence of a linear memory term and a nonlinear source term where is a bounded domain in () with a Dirichlet boundary condition. Under suitable assumptions on the initial data and the relaxation function g, we obtain the global existence and finite time blow-up of solutions with initial data at low energy level (i.e. ), by using the Galerkin method, the concavity method and an improved potential well method involving time t. We also derive the upper bounds for the blow-up time. Finally, we obtain the existence of solutions which blow up in finite time with initial data at arbitrary energy level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.