Abstract
The inhomogeneous incompressible Navier-Stokes equations with fractional Laplacian dissipations in the multi-dimensional whole space are considered. The existence and uniqueness of global strong solution with vacuum are established for large initial data. The exponential decay-in-time of the strong solution is also obtained, which is different from the homogeneous case. The initial density may have vacuum and even compact support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.