Abstract
This paper deals with a higher-order wave equation with general nonlinear dissipation and source term \begin{document}$u''+(-Δ)^mu+g(u')=b|u|^{p-2}u, $ \end{document} which was studied extensively when $m=1, 2$ and the nonlinear dissipative term $g(u')$ is a polynomial, i.e., $g(u')=a|u'|^{q-2}u'$. We obtain the global existence of solutions and show the energy decay estimate when $m≥1$ is a positive integer and the nonlinear dissipative term $g$ does not necessarily have a polynomial grow near the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.